cyber resilience framework
Threatonomics

Financially Proven AI for Dynamic Threats

The Resilience Platform

by Ann Irvine , Chief Data and Analytics Officer
Published

Today, the hype around AI is extreme.

The B2B SaaS market is flooded with companies trying to leverage new natural language generation technologies but struggling to focus on a real-world problem. In this sea of smoke and mirrors, Resilience maintains its singular focus. Our technology is purpose-built for a specific domain – cyber resilience.

Our business has proven the financial accuracy of our cyber resilience AI models, and we have expanded our solution to offer these insights directly to customers. We help customers manage their cyber risk through both a technical and a financial lens by capturing signals relevant to their unique risk. These signals then inform our AI models, which together paint a detailed and understandable picture of their cyber risk.

This specialization allows us to predict which threats have the most potential to impact an organization and which tools will be most effective in prevention and mitigation. Combining knowledge from cyber insurance, cybersecurity, and risk quantification enables our models to forecast the financial impact of different scenarios, the return on investment (ROI) of certain security tools, and the cost of risk transfer.

Financially-Proven AI

The intelligence task that we’re solving at Resilience is understanding, quantifying, and managing cyber risk. “This task isn’t well-suited for artificial general intelligence tools like ChatGPT, but we have long used AI and machine learning technology to power our cyber risk models,” said Dr. Ann Irvine, Chief Data Scientist and VP of Product Management at Resilience. “Making these models available to customers helps them understand their cyber risk from a financial perspective– which is a new way of thinking for many security leaders.”

Security leaders dream of a world where they can prevent any and all potential incidents by creating a bulletproof network. However, the reality of cybersecurity is that securing your infrastructure against everything in perpetuity is impossible. Our risk models are designed to help security leaders decide which controls will be the most impactful and where they should direct their attention and budget to have the highest impact from a financial standpoint. We are so confident in our model’s financial accuracy that we use them to underwrite our insurance policies.

Resilience’s AI models mimic how the best cyber-risk experts model and approach cyber risk, from understanding the initial sources of exploitation to calculating the business impact of an attack. Our models help security and business leaders make confident and financially-backed decisions around exposures and controls. They analyze the effectiveness of adopting specific security tools, the cost of accepting risk, and how much risk to transfer through insurance. This in-depth analysis weighs the cost-benefit ratio of different investments and provides data-driven recommendations that align with the client’s risk appetite and financial goals.

AI and Continuous Learning 

An organization’s risk profile is not static but evolves continuously due to new threats and internal transformations like acquiring a company or migrating data to the cloud. Our AI platform is specifically designed to address this challenge by continuously updating based on our most recent understanding of an organization’s controls, exposures, and the threat landscape.

The Resilience platform is designed to work even when there are gaps in information, ensuring clients can onboard and see value quickly. “The more our clients engage with our AI platform and provide more information and data, the more accurate and tailored the cyber risk analyses and recommendations become,” said Irvine.

While no model is perfect, Resilience’s risk models can be used to connect the silos between security, risk management, and financial leadership in a strategic conversation about cyber risk.

You might also like

How to get everyone on the same page about your cybersecurity plan

Everyone needs cybersecurity–and we’d argue that most organizations need cyber insurance–but not everyone understands how or why cyber risk solutions actually benefit their company. Resilience is tackling both the “how” and the “why” with our dual product offerings: The Edge Solution Platform and the Edge Engagement Summary. First, the Edge Solution. Edge is packed with […]

2025 cybersecurity and insurance predictions

Get ready for threats both old and new in 2025

It’s prediction season, and while no one can see into the future, we can definitely take some educated guesses. From increasingly severe ransomware attacks to deepfakes that deceive Fortune 500 companies, we’re keeping an eye out for some major events in 2025. And while many organizations are taking steps to beef up their defenses, the […]

Contrasting and comparing FAIR with the Resilience solution

As market awareness of cyber risk quantification grows, we frequently receive questions from clients and curious risk managers about FAIR (Factor Analysis of Information Risk)—what it is, whether it truly provides accurate cyber risk quantification, the effort needed to set it up and maintain, and more. Clients often ask us to compare the FAIR methodology […]

How does Resilience establish the probabilities presented in my LEC?

Managing risk successfully at any level requires an understanding of a concept called “probability.” As both an insurance company (risk transfer) and a cyber risk management company, Resilience relies on understanding probabilities to price our services and to guide our clients to greater levels of cyber resilience. As we often receive questions from our clients […]

Moving beyond heat maps for better risk management

Heat maps are among the most widely used—and debated—tools for risk managers worldwide to communicate risks in their registries or project portfolios. Despite their popularity, we advise leaders seeking transparency in discussing risk and value to avoid relying on them. What are heat maps? Risk managers often use heat maps (or risk matrices) to represent […]

Breaking Lemonade: Understanding Value at Risk

I talk a lot about value-at-risk among my colleagues, with our customers, and the broader market. Value-at-risk may be the single most important measure to grasp, without which one cannot accurately measure risk transfer, excess risk, risk acceptance, and return on controls. Yet, these are all important concepts that leadership in modern organizations need to […]