cyber resilience framework

Financially Proven AI for Dynamic Threats

The Resilience Platform

by Ann Irvine , Chief Data and Analytics Officer

Today, the hype around AI is extreme.

The B2B SaaS market is flooded with companies trying to leverage new natural language generation technologies but struggling to focus on a real-world problem. In this sea of smoke and mirrors, Resilience maintains its singular focus. Our technology is purpose-built for a specific domain – cyber resilience.

Our business has proven the financial accuracy of our cyber resilience AI models, and we have expanded our solution to offer these insights directly to customers. We help customers manage their cyber risk through both a technical and a financial lens by capturing signals relevant to their unique risk. These signals then inform our AI models, which together paint a detailed and understandable picture of their cyber risk.

This specialization allows us to predict which threats have the most potential to impact an organization and which tools will be most effective in prevention and mitigation. Combining knowledge from cyber insurance, cybersecurity, and risk quantification enables our models to forecast the financial impact of different scenarios, the return on investment (ROI) of certain security tools, and the cost of risk transfer.

Financially-Proven AI

The intelligence task that we’re solving at Resilience is understanding, quantifying, and managing cyber risk. “This task isn’t well-suited for artificial general intelligence tools like ChatGPT, but we have long used AI and machine learning technology to power our cyber risk models,” said Dr. Ann Irvine, Chief Data Scientist and VP of Product Management at Resilience. “Making these models available to customers helps them understand their cyber risk from a financial perspective– which is a new way of thinking for many security leaders.”

Security leaders dream of a world where they can prevent any and all potential incidents by creating a bulletproof network. However, the reality of cybersecurity is that securing your infrastructure against everything in perpetuity is impossible. Our risk models are designed to help security leaders decide which controls will be the most impactful and where they should direct their attention and budget to have the highest impact from a financial standpoint. We are so confident in our model’s financial accuracy that we use them to underwrite our insurance policies.

Resilience’s AI models mimic how the best cyber-risk experts model and approach cyber risk, from understanding the initial sources of exploitation to calculating the business impact of an attack. Our models help security and business leaders make confident and financially-backed decisions around exposures and controls. They analyze the effectiveness of adopting specific security tools, the cost of accepting risk, and how much risk to transfer through insurance. This in-depth analysis weighs the cost-benefit ratio of different investments and provides data-driven recommendations that align with the client’s risk appetite and financial goals.

AI and Continuous Learning 

An organization’s risk profile is not static but evolves continuously due to new threats and internal transformations like acquiring a company or migrating data to the cloud. Our AI platform is specifically designed to address this challenge by continuously updating based on our most recent understanding of an organization’s controls, exposures, and the threat landscape.

The Resilience platform is designed to work even when there are gaps in information, ensuring clients can onboard and see value quickly. “The more our clients engage with our AI platform and provide more information and data, the more accurate and tailored the cyber risk analyses and recommendations become,” said Irvine.

While no model is perfect, Resilience’s risk models can be used to connect the silos between security, risk management, and financial leadership in a strategic conversation about cyber risk.

You might also like

Five Predictions on the State of Cyber Claims in 2024

Unravel the complexities of cyber risk with the 2023 Mid-Year Claims Report by Resilience. Dive into our analysis and predictions for the cyber insurance industry in 2024, including the pivotal role of AI and regulatory changes.

Knowing Your Risk Surface: A Risk-Focused Approach to Incident Response

After decades of more damaging and less predictable cyber attacks, modern cybersecurity practitioners have recognized the critical need to incorporate more risk-based approaches to their planning efforts. However, despite the continuing advances within the cybersecurity field, analytics firms are noting record years for cybercriminals and breaches against some of the most well-defended organizations in the […]

Top Three Trends on Cyber Resilience from The World Economic Forum

With generative AI dominating the conversation at the World Economic Forum’s annual meeting in Davos this year – a massive 32 sessions in total – it’s easy to overlook another topic that was the focus of WEF’s 2024 Global Cybersecurity Outlook: Cyber Resilience.  The term has taken on a new importance in 2024 as enterprise […]

Do you Need Human Brains to make AI Useful in Cybersecurity?

As the world advances with data processing and artificial intelligence (AI) capabilities at a mind-boggling pace, we might feel as if humans are becoming obsolete. This is certainly the question of an endless series of articles that have clogged our inboxes since the release of ChatGPT publicly in late 2022. Maybe this development is a […]

Mastering Cyber Resilience

Cyber Resilience 101, 202, and accompanying Cyber Resilience Workshops are designed to teach brokers the fundamentals of proactive cyber risk management

Best of Threatonomics Year-End Review

As 2023 comes to an end, we are looking back on our top five most popular blog posts that helped shape our understanding of what it means to be cyber-resilient. 1. Moneyballing Cyber Resilience  Chief Cyber Resilience Officer Richard Seiersen wrote “Moneyballing Cyber Resilience” as a follow-up to  his first webinar, “Superforecasting.” The book, Moneyball, […]